&

Software Testing

Hans-Petter Halvorsen, M.Sc.

End-User User_G_u_ig’e_s_ Installation :
Documentation-- =" " ~~~Guides L Planning J
.-~ _Deployment “uy
System e \\\
4 TTa \‘\ Plan

/ \

\ Project Planning

\

N T The Software

Software Test Documentation 1,
I
Software Test Plan (STP) -

Test | Deve|opment Requirements

\

Documentation : AnalySiS

\

Gantt Chart

:
L] I
Documentatiops” - ----- > Maintenance -~-_ AN Slt)ftwsz:\PePDevelopment
:
I
I
|
|
I

r

Lifecycle A

/

[Implementation }
.’ Software Requirements

Code \\\\ (S D LC) /k, Specifications

AN -“ Gantt Chart
System Documentation "~ _ -

-

e { Design } : SDD Software Design Documents
with ER Diagram, UML Diagrams, CAD Drawings

Project Management (Gantt Chart, etc.)

Start

w
£
=

Typical Software Documentation

i

1. Planning

2.Requierements

/Design
(The stakeholders, the

software team; architects,

—

2. Testin
(QA people

-{

m—

3. End-user

Documentation
(The people that
shall actually use

Finish the software)

Software
Development Plan

High-Level
Requirements and
Design Documents

Detailed
Requirements and
Desi o) e

Test Plans

Test Documentation

—

Documentation
Installation Guides

User Manuals

(SDP)
WHAT (SRS)
HOW (SDD)

ER Diagram (Database)
UML Diagrams (Code)
CAD Drawings, etc.

“Howto Test/ (STP) ™ = »
What to Test (STD)

Proof that you have tested and that theI
software works as expected J

Technical Stuff
(Super User/ IT dep.)

How to install it

How to use it
(End User)

Main purpose of Testing: Find Bugs!!

* Requirements Errors: 13%

* Design Errors: 24%

* Code Errors: 38%

* Documentation Errors: 13%
* Bad-fix Errors: 12%

http://progquest.safaribooksonline.com/book/software-engineering-and-
development/9781449691998/chapter-3-engineering-of-software/42?uicode=telemark

Why Find Bugs early?

Cost per defect/Bug

Software Development Life Cycle (SDLC) >

The First Bug ever

l:v}'-"*"\ e{&” /} - | Lt
3 ~ : \ £\ ’ . '.

They found a bug (actually a moth) inside a computer in 1947 that made the program not
behaving as expected. This was the “first” real bug.

What is Bugs? N

* A software bug is an error, flaw, failure, or fault in a
computer program or system that produces an

incorrect or unexpected result, or causes it to behave in
unintended ways

* They found a bug (actually a moth) inside a computer in

1947 that made the program not behaving as expected.
This was the “first” real bug.

* Debugging: Find and Remove/Fix Bugs

Software Testing

“If you don’t know how your code works, it does
not work

—you just don’t know it yet”

“50% of the software development is
about testing your software”

Different Systems Needs Different Testlng

888380 <22 MBE" TIES

Once upon a time there was a hare who - Microsoft Word
Home Menu Insert Page Layout References Mailings Review View |
1 [B L ._ﬂ 53 Web Layout s (_{ j) == New Window :"_,;__1] —
]] outtine 23 = Arrange Al § =2
| Print | Fui reen _ Show/Hide Zoom Switch Macros
Layout | Reading == Draft = = Isent Windows ~ -
Document Views Zoom Macros
| TR s = . Foe 15 i e g BT RLE] D S . =
L S TR TR TR K I S RO TR RS T

pnce upon a time there was a hare who, boasting how he could run
faster than anyone else, was forever teasing tortoise for its
slowness. Then one day, the irate tortoise answered back: “Who do

: you think you are7 There’s no deny1ng you re swift, but even you can
1 beb e

I 3] “Be:
the"
> INFEED BELT CONVEYOR : you

VHXT

DISCHARGING CONVEYOR.

< COMPRESSED AIR PRESSURE

2007-03-10 21:44:24 Tank level Low -1 -1
200 1021:47:10 VESSEL3 VDB open fail Active =il |

7 Principles of Testing

1. Testing shows the presence of Bugs: Software Testing reduces the probability of
undiscovered defects remaining in the software but even if no defects are found, it
is not a proof of correctness.

2. Exhaustive Testing is impossible: Testing everything is impossible! Instead we need
optimal amount of testing based on the risk assessment of the application.

3. Early Testing: Testing should start as early as possible in the Software Development
Life Cycle (SDLC)

4. Defect Clustering: A small number of modules contain most of the defects/bugs
detected.

5. The Pesticide Paradox: If the same tests are repeated over and over again,
eventually the same test cases will no longer find new bugs

6. Testing is Context dependent: This means that the way you test a e-commerce site
will be different from the way you test a commercial off the shelf application

7. Absence of Error is a Fallacy: Finding and fixing defects does not help if the system
build is unusable and does not fulfill the users needs & requirements

http://www.guru99.com/software-testing-seven-principles.html
http://www.testingexcellence.com/seven-principles-of-software-testing ®

&

Different Types of
Testing

Hans-Petter Halvorsen, M.Sc.

Types of Testing

[Non Functional } GRE
Jesting [Stress Testing] [Deployment Testing}

[Functional 1
[Load Testing] Testing
GUI Testing
Performance Regression
[Security Testing] Testing Testing
[Usability
Requirements - Testing
[Testing } Usab.lllty
Testing

[User Testing }

Who does the Testing?

* Programmers/Developers

— Programmers usually create test cases and run them as they write the code to

convince themselves that the program works. This programmer activity related to
testing is usually considered to be unit testing.

e Testers

A tester is a technical person whose role for the particular item being tested is just to write test
cases and ensure their execution. Although programming knowledge is extremely useful for

testers, testing is a different activity with different intellectual requirements. Not all good
programmers will be good testers.

* End Users/Customers

— Itis a good idea to involve users in testing, in order to detect usability problems and
to expose the software to a broad range of inputs in real-world scenarios.

Test Categories
Black-box vs. White-box Testing

Black-box Testing: You need no
knowledge of how the system is created.

- T

—
—
—
==
=
—
—
=
-
—-—
-

Analyze Code & Identify Tests

Validate Output
Step 1

|

Step 3

Input

Software

White-box Testing: You need to have
knowledge of how (Design and Siepts
Implementation) the system is built

1

Typically done by Developers, etc

Levels of Testing

Is the responsibility of the customer — in general. The goal
is to gain confidence in the system; especially in its non-
Acceptance Testing functional characteristics

ol

-

System Testing The behavior of the whole product(system) as

' defined by the scope of the project

Integratlon Testmi\ Interface between components; interactions

with other systems (OS, HW, etc)

Unit Testing *\' Any module, program, object separately

testable

Levels of Testing

> Unit Testing: Test each parts
(1) independently and isolated

—

Regression Testing: Test
that it still works after a
change in the code

Integration Testing: Make sure
that different pieces work
together. Test the Interfaces
between the different pieces.

Interaction with other systems A/Q)
(Hardware, OS, etc.)

System Testing: Test the whole system

Levels of Testing

Requirements & Design

Start
Start/Developmen
Y S “. Unit Tests are written by the Developers as part of the
[Unit Testing] ' Programming. Each part is developed and Unit tested
| i . separately (Every Class and Method in the code)

N ~ Regression testing is testing the system to check that
: Regression Testing . changes have not “broken” previously working code.
_____ Al" Both Manually & Automatically (Re-run Unit Tests)

. : Integration testing means the system is put together
[Integratlcin Testing] . and tested to make sure everything works together.
System/Validation System -testlng is typ|c5ally-BIack-bf)x Tests th.at vallda'Fe
Testing ' the entire system against its requirements, i.e Checking
________________________________ that a software system meets the specifications
v d The Customer needs to test and approve the software

Finish [aCCeRianceylesting] before he can take it into use. FAT/SAT.

Test Categories:

Testing Overview
Test Methods:

Test Levels:

[Black-box Testing]

White-box Testing

[Unit Testing]

Regression Testing

[Integration Testing]

System Testing

[Acceptance Testing]

{ GUI Testing }

[Stress Testing]

[Load Testing]

|

[Security Testing] Usability
Testing
Performance }
Testing (Functional }
. Testing

|

Non Functional
Testing

J

etc. m

&

Software Test Plan
(STP)

Hans-Petter Halvorsen, M.Sc.

Test Planning

e To maximize the effectiveness of resources

spent on testing, a systematic approach is
required

* A Software Test Plan (STP) should be created

Test Documentation

Software Test Plan (STP)

[Planning Tests]—>[Perform Tests Document W
. Test Results |

T T Software Test
— e Documentation
1=FE}-------- - - (STD)

— JSoftware Design Document (SDD) | - Functional & Non-Functional Requirements
Software Requirements Specifications (SRS) 1 - User & System Requirements

These documents will be the foundation for all Testing

21

Project Management (Gantt Chart, etc.)

Typical Software Documentation

Start Software
1. Planning { Development Plan
’_ High-Level
2.Requierements II;eq.uweDments antd
Desien - esign Documents
(Tée stakgholders, the Detailed
software team; architects, Requirements and
£ | W& deaiBnsrandereiopers) — w |meD@SigN DOGUBRER! S
= | .
2. Testin Test Plans
l (QA people _— .
i Test Documentation
padddd ol d 7T 7 7 System T
3. End-user Documentation

Documentation

(The people that

shall actually use
Finish the software)

Installation Guides

User Manuals

(SDP)
WHAT (SRS)
HOW (SDD)

ER Diagram (Database)
UML Diagrams (Code)
CAD Drawings, etc.

“How to Test/ (STP)™ ™ »
What to Test (STD) '

Proof that you have tested and that th§
software works as expected I

= T Téchhicalstaoff— — — =

(Super User/ IT dep.)
How to install it

How to use it
(End User)

What is a Software Test Plan (STP)?

A Document that answers the following:

e Testing should be based on Requirements & Design Documents
* What shall we test?

* How shall we test?

* Hardware/Software Requirements

* Where shall we test?

* Who shall test?

* How often shall we test (Test Schedule)?

* How shall tests be documented?

= |tis not enough simply to run tests; the results of the tests must be systematically recorded. It must be
possible to audit the testing process to check that it has been carried out correctly

= System tests: This section, which may be completely separate from the test plan, defines
the test cases that should be applied to the system. These tests are derived from the
system requirements specification. http://www.softwareengineering-9.com/Web/Testing/Planning.html

These things need to be specified in the STP

- = [- | REMYTO
- Test

Test specs and
Bequirement document thuman rescurces Test environment

m

L

Appendix D in Essentials of Software Engineering

Test Plan Example

Goals and Exit Criteria (Quality, Robustness, Schedule, Performance Goals
of the Product, ...)

ltems to be Tested/Inspected (Executables such as modules and

components, Nonexecutables such as Requirments and Design
specifications, ...)

Test Process/Methodologies (Unit, Functional, Acceptance, Regression
Tests, Black-box, White-box, Test metrics, Bug report process, ...)

Resources (People, Tools, Test Environment, ...)

Schedule (Test-case development, Test execution, Problem reporting and
fixing, ...)

Risks (...)
Major Test Scenarios and Test Cases {(...)

Essentials of Software Engineering, Frank Tsui; Orlando Karam; Barbara Bernal, 3 ed., Jones & Bartlett Learning

How to make a Test Plan

Z. Des‘\gn Test 3. Define T1est
Strategy Ob)eciives

©. Plan Test ; . 4 Define Test
environment - criteria

T. achnedvig 4 , . Determing T1est
£stiimaction Deliveraples

http://www.guru99.com/what-everybody-ought-to-know-about-test-planing.html

Test Cases List Example

Tester: Date: If Test Cases Fails, report Bugs in VSO

The Login Procedure works

User Data Saved in the Database

etc

The Testers fill in these Lists electronically. Should be included in Software Test Documentation

Test Planning Summary

Test planning involves scheduling and estimating the system testing process,
establishing process standards and describing the tests that should be carried out.

As well as helping managers allocate resources and estimate testing schedules, test
plans are intended for software engineers involved in designing and carrying out system
tests.

They help technical staff get an overall picture of the system tests and place their own
work in this context.

As well as setting out the testing schedule and procedures, the test plan defines the
hardware and software resources that are required.

Test plans are not a static documents but evolve during the development process. Test
plans change because of delays at other stages in the development process.

Test planning is particularly important in large software system development.

For small and medium-sized systems, a less formal test plan may be used, but there is

still a need for a formal document to support the planning of the testing process.
http://www.softwareengineering-9.com/Web/Testing/Planning.html @

&

Test Environment

Hans-Petter Halvorsen, M.Sc.

Why Do We Need a Test
Environment?

Why cant we just use our own PC?

Why Test Environment?

“It works on my PC” says the Developer
Clean Environment

On the Developers PCs we have all kind of Software installed that
the Customer dont have, e.g. Development Tools like Visual
Studio, etc.

We need to test on different Platforms and Operating Systems
Customers may use different Web Browsers

Deployment: Test of Installation packages

Make the software available for Testers

etc.

’

“It works on my Computer’

Make sure to test your software on other Computers and

Environments than your Development Computer!

e Everything works on the Developer Computer

 The Customers Database is not the same as yours

 The Customer may not use the same OS

* The Customer may not use the same Web Browser

 The Customer do not have Visual Studio, SQL Server, etc. on their
Personal Computer

* Etc.

=> Test Environment is needed!

until finished
Developers & Testers

)

Developers

Customers

[Development } >[Testing)

A Clean PC/Server (or a network

with PCs and Servers) where you

install and test your Software.

Today we typically set-up a Virtual
nvironment

Typically the Developers Personal
Computer with Database, Web
Server and Programming Software

Development

Environment Test Environment

>[Production]

The Customers environment
where you unstall the final
software (Servers and
Clients)

Production
Environment

Programming environments such as Visual
Studio, etc. should not be installed in this
environment. You need to create .exe files
etc. in order to make your software run.

Guests

Host —

Virtualization

Windows, Linux, ... VM = Virtual Machines

o
Windows, Linux, ...
Virtualization
Software {VM } {VM } {VM }

{ Operation System 1 { Hypervisor }

p——

Hardware
(Computer)

A Hypervisor can
run directly on the
computer without
a Host OS

Virtualization Software

A lot of Virtualization Software exists. Here are some examples:
 VMware Workstation

 VMware Workstation Player (Free of charge and simple to
use)

* VMware vSphere and vSphere Hypervisor
 VMware Fusion (Mac)

e Parallels Desktop (Mac)

* Microsoft Hyper-V

e VirtualBox

* etc.

VMware Workstation Player

VMware Workstation Player is for personal use on your
own PC. VMware Player is free of charge for personal
non Commercial use. -f-:jlw : VMware Pla yer (Non-commercial use onl) - o IEN

=
Welcome to VMware Player
3] Windows 8 -
2 = Create a New Virtual Machine
G Windows 7 4+, Create anew virtual machine, which will then be
3 _— added to the top of your library
3 .l Windows Server 2012

Open a Virtual Machine
Open an existing virtual machine, which will then be
added the top lorary.

VMware is a company that has f s
been specializing within O ey
virtualization software. @
http://www.vmware.com

e

When are you
finished Testing?

Hans-Petter Halvorsen, M.Sc.

Software Testing

“50% of the software development is
about testing your software”

When are we finished with Testing?

Testing

Requirements Development & Coding Code Final
2 . Freez .
+ S O = =
I &4 = > =
¢ 3
Continuous Testing in the whole SDLC! o
Testin Testin
Increased Increased Increased Increased
Focus Focus Focus Focus
Requirements Requi.reme-nts & Functionality So-ft.ware without
Functionality Critical Bugs

You can never find all Bugs!

Released Software do have Bugs!
Agile/Scrum: Periodically lterations/Sprint every 14-30 days

When to Stop

 Asimple answer is to sto

Testing?

p testing when all the

planned test cases are executed and all the

problems found are fixed.

* Inreality, it may not be t

nat simple. We are

often pressured by schedule to release

software product.

When to Stop Development?

Software Finished

“100%’
1190%”

} Details, small adjustments, etc.
The last 10% takes a lot of time!!!

Sooner or later you have to say enough is
enough and release version 1.0.

One must define within the development
company, development team or in dialogue
with the customer what is defined as "good
enough". Software will never be 100% complete
or error-free!

Time

W, When should you stop Testing?
/’76& (depends on Time, Budget, etc.)

In the beginning it it easy to
find bugs with few resources

Critical Point

Time

When to Stop Testing?

e When the tester has not been able to find another
defect in 5 (107 30?7 100?) minutes of testing

* All code reviews and walkthroughs have certified the
code as ok

 When a given checklist of test types has been
completed

* The code has passed all unit tests
 When testing runs out of its scheduled time

E. J. Braude and M. E.Bernstein, Software Engineering: Modern Approaches, 2 ed.: Wiley, 2011. +++ @

‘

Bug Tracking Systems

Hans-Petter Halvorsen, M.Sc.

Bug Tracking Systems

* A “bug tracking system” or “defect tracking system’
is a software application that keeps track of
reported software bugs in software development

projects.
* |t may be regarded as a type of “issue tracking
system”.

* Typically bug tracking systems are integrated with
other software “project management applications”
—e.g., Visual studio Team Services, Jira, etc.

/

https://en.wikipedia.org/wiki/Bug tracking system

Bug Tracking Software

Team Foundation Server/Visual Studio Team
Services

Jira

Bugzilla
Clearquest

... (hundreds)

Bug Reporting and Tracking

Developer

‘ Fix _ .
G _; Bugs Check if Bug Fixes

are Approved

Bug
Tracking
System

N
Tester

[Check if Bugs }

Report
are Fixed
\
Assign \ Go through Lists of
Responsible Not Fixed Bugs,
Test Manager, - Person J L Fixed Bugs, etc.

Project Manager, QA Department

‘

Visual Studio Team Services

Hans-Petter Halvorsen, M.Sc.

-

Dd Visual Studio Online / Systemutvikling 2015

HOME CODE WORK BUILD TEST

Backlogs Queries

I
New ~ w ¢
Assigned to me

Unsaved work items

4 My favorites

All Bugs

All My Work Items
4 Team favorites

All Bugs
4 My Queries

All My Work Items
4 Shared Queries

» Current Sprint

All Bugs

All Work Items

Feedback

My Bugs

New Features

You can create
Queries (both
Personal and Team
Queries)

Work Items Example

All Work Items

Results Editor Charts

e equery & €@ I & =
1D Work Item Type Title
100 Product Backlog Item | Introduction

101 Product Backlog Item
102 Product Backlog Item,

Jl Requirement Analysis
Jl Software Design

103 Product Backlog Itend [l Development Processes

104 Task What is System Engineering
105 Task

106 Task

107 Task ERwin

108 Bug Jl Database Communication fails
109 Buo l Datahase Scrint not Warkina

Product Backlog It¢m 100: Introduction

B ¢ 9 o =
Tags Add...
Introduction

Iteration Systemutvikling 2015\Release 1\Sprint 1

STATUS

Assigned To #ijs Olav Deehli
State New

Reason New backlog item

DESCRIPTION STORYBOARDS TEST CASES TASKS (1)

Column options

«- List of Work Items

Hans-Petter Halvorsen | % @

Search work items

P~
L

18 work items (1 selected)

Work item pane Bottom [,

Hans-Petter Halvors... New

Hans-Petter Halvors... Done

Olav Daehli To Do
Hans-Petter Halvors... New

Olav Daehli New Hans-Petter Halvors

Work Item Details

DETAILS
Effort
Business Value

Area Systemutvikling 2015

ACCEPTANCE CRITERIA HISTORY LINKS (1) ATTACHMENTS

» Y

Copy query URL Filter
Assigned To State Created By
Olav Deehli New Hans-Petter Halvors...
Hans-Petter Halvors... New Hans-Petter Halvors...
Olav Daehli New Hans-Petter Halvors...

Hans-Petter Halvors...
Hans-Petter Halvors. ..
Hans-Petter Halvors... In Progress Hans-Petter Halvors...
Hans-Petter Halvors,.. In Progress Hans-Petter Halvors...
Hans-Petter Halvors...

Hans-Petter Halvors...

1 of 18

Work Items — New Bug

New Bug 1*: WS is not working

= X (. 0 0! Copy template URL

Tags Add...

WS is not working

STATUS CLASSIFICATION PLANNING

Assigned To ¥ Area Development Project 1\Desktop ¥ Stack Rank

State Active ~ Iteration Development Project 1\Beta ¥ Priority 2 v
Reason New - Severity 3 - Medium o

REPRO STEPS SYSTEMINFO TEST CASES HISTORY ALLLINKS ATTACHMENTS

DISCUSSION ONLY ALL CHANGES
[No entries with comments]

Queries
* Used to find existing Work Items

* You may create different Queries to make it easy to find
the Work Items you need

* Queries may be personal or visible for everybody in the
project (Team Queries)

ery 1

Operator

New Query 1 . 5 work items (1 selected)
-« Creating a Query - Example
H M g 2 Column Options

Type of Query [E Flat List of Work Items & Work Items and Direct Links %3 Tree of Work Items

Filters for top level work items

And/Or Field Operator Value
b X Team Project v|= v @Project
= X And v Work Item Type v (= ¥ [Any]
= X And v State v = v [Any]

o Add new clause

S| R & » & =2 Column Options

ID Work Ite Title Assigned To State Tags

il Bug Database Error Hans-Pett... Active

2 Task Add Web functionality New

4 Test Case Test Empty Fields Hans-Pett... Design

3 Test Case Test Web Service Hans-Pett... Design

5 Bug WS is not working Active m

e

Code Review
& Refactoring

Hans-Petter Halvorsen, M.Sc.

What is Refactoring?

* Even when using best practices and making a
conscious effort to produce high-quality software,
it is highly unlikely that you will consistently
produce programs that cannot be improved.

e Refactoring is

— the activity of improving your code style without altering its
behavior

— a change made to the internal structure of software to make it
easier to understand and cheaper to modify without changing
its observable behavior

Refactoring - Symptoms

* Coding Style and Name Conventions not followed
* Proper Commenting not followed
* Duplicated code (clearly a waste).

* Long method (excessively large or long methods perhaps should be subdivided
into more cohesive ones).

* Large class (same problem as long method).

* Switch statements (in object-oriented code, switch statements can in most
cases be replaced with polymorphism, making the code clearer).

* Feature envy, in which a method tends to use more of an object from a class
different to the one it belongs.

* |Inappropriate intimacy, in which a class refers too much to private parts of
other classes.

=> Any of these symptoms (and more) will indicate that your code can be
improved. You can use refactoring to help you deal with these problems.

D

Hans-Petter Halvorsen, M.Sc.

University College of Southeast Norway

WWwWw.usn.no

E-mail: hans.p.halvorsen@hit.no
Blog: http://home.hit.no/~hansha/

