
Software	Testing

Hans-Petter	Halvorsen,	M.Sc.

Requirements	
Analysis

Design

Implementation

Testing

Maintenance

Planning
Deployment

SRS

SDD

STD

Code

Installation	
Guides

User	Guides

Gantt		Chart

with	ER	Diagram,	UML	Diagrams,	CAD	Drawings

Test	
Documentation

Software	Requirements	
Specifications	

Software	Design	Documents
System	Documentation

Software	Test	Plan	(STP)

Project	Planning

End-User
Documentation

System
Documentation

Software	Test	Documentation

SDP
Software	Development	

Plan	

Gantt		Chart

The	Software	
Development	

Lifecycle
(SDLC)

Typical	Software	Documentation

High-Level	
Requirements	and	
Design	Documents

User	Manuals

System	
Documentation

Installation	Guides

Test	Plans

Test	Documentation

Detailed	
Requirements	and	
Design	Documents

ER	Diagram	(Database)
UML	Diagrams	(Code)

Ti
m
e

Start

Finish

How	to	Test/
What	to	Test

CAD	Drawings,	etc.

1.	Planning

2.	Testing

3.	End-user	
Documentation
(The	people	that	
shall	actually	use	
the	software)

Technical	Stuff

How	to	use	it
How	to	install	it

Proof	that	you	have	tested	and	that	the	
software	works	as	expected

(The	stakeholders,	the	
software	team;	architects,	
UX	designers,	developers)

(QA	people)

(Super	User/	IT	dep.)

WHAT
HOW

(End	User)

Pr
oj
ec
t	M

an
ag
em

en
t	(
Ga

nt
t	C

ha
rt
,	e
tc
.)

(SRS)
(SDD)

(STP)
(STD)

Software	
Development	Plan

(SDP)

2.Requierements
/Design

Main	purpose	of	Testing:	Find	Bugs!!

• Requirements	Errors:	13%
• Design	Errors:	24%
• Code	Errors:	38%
• Documentation	Errors:	13%
• Bad-fix	Errors:	12%

http://proquest.safaribooksonline.com/book/software-engineering-and-
development/9781449691998/chapter-3-engineering-of-software/42?uicode=telemark

Why	Find	Bugs	early?

Software	Development	Life	Cycle	(SDLC)

The	First	Bug	ever

They	found	a	bug	(actually	a	moth)	inside	a	computer	in	1947	that	made	the	program	not	
behaving	as	expected.	This	was	the	“first”	real	bug.

What	is	Bugs?
• A	software	bug	is	an	error,	flaw,	failure,	or	fault	in	a	
computer	program	or	system	that	produces	an	
incorrect	or	unexpected	result,	or	causes	it	to	behave	in	
unintended	ways

• They	found	a	bug	(actually	a	moth)	inside	a	computer	in	
1947	that	made	the	program	not	behaving	as	expected.	
This	was	the	“first”	real	bug.

• Debugging:	Find	and	Remove/Fix	Bugs

“If	you	don’t	know	how	your	code	works,	it	does	
not	work	
– you	just	don’t	know	it	yet”

Software	Testing

“50%	of	the	software	development	is	
about	testing	your	software”

Different	Systems	Needs	Different	Testing
1 2

3 4

7	Principles	of	Testing
1. Testing	shows	the	presence	of	Bugs:	Software	Testing	reduces	the	probability	of	

undiscovered	defects	remaining	in	the	software	but	even	if	no	defects	are	found,	it	
is	not	a	proof	of	correctness.

2. Exhaustive	Testing	is	impossible:	Testing	everything	is	impossible!	Instead	we	need	
optimal	amount	of	testing	based	on	the	risk	assessment	of	the	application.

3. Early	Testing:	Testing	should	start	as	early	as	possible	in	the	Software	Development	
Life	Cycle	(SDLC)

4. Defect	Clustering:	A	small	number	of	modules	contain	most	of	the	defects/bugs	
detected.

5. The	Pesticide	Paradox:	If	the	same	tests	are	repeated	over	and	over	again,	
eventually	the	same	test	cases	will	no	longer	find	new	bugs

6. Testing	is	Context	dependent:	This	means	that	the	way	you	test	a	e-commerce	site	
will	be	different	from	the	way	you	test	a	commercial	off	the	shelf	application

7. Absence	of	Error	is	a	Fallacy:	Finding	and	fixing	defects	does	not	help	if	the	system	
build	is	unusable	and	does	not	fulfill	the	users	needs	&	requirements

http://www.guru99.com/software-testing-seven-principles.html
http://www.testingexcellence.com/seven-principles-of-software-testing

Different	Types	of	
Testing

Hans-Petter	Halvorsen,	M.Sc.

Types	of	Testing

Stress	Testing

Usability	
Testing

Performance	
Testing

User	Testing

Regression	
Testing

Setyp	&	
Deployment	Testing

...

...
...

Requirements
Testing

GUI	Testing

Functional
Testing

Non	Functional
Testing ...

...

...Load	Testing

Usability	
Testing

Security	Testing

Who	does	the	Testing?
• Programmers/Developers

– Programmers	usually	create	test	cases	and	run	them	as	they	write	the	code	to	
convince	themselves	that	the	program	works.	This	programmer	activity	related	to	
testing	is	usually	considered	to	be	unit	testing.

• Testers
– A	tester	is	a	technical	person	whose	role	for	the	particular	item	being	tested	is	just	to	write	test	

cases	and	ensure	their	execution.	Although	programming	knowledge	is	extremely	useful	for	
testers,	testing	is	a	different	activity	with	different	intellectual	requirements.	Not	all	good	
programmers	will	be	good	testers.	

• End	Users/Customers
– It	is	a	good	idea	to	involve	users	in	testing,	in	order	to	detect	usability	problems	and	

to	expose	the	software	to	a	broad	range	of	inputs	in	real-world	scenarios.	

Test	Categories
Black-box	vs.	White-box	Testing

White-box	Testing:	You	need	to	have	
knowledge	of	how	(Design	and	
Implementation)	the	system	is	built

Black-box	Testing:	You	need	no	
knowledge	of	how	the	system	is	created.

Typically	done	by	Developers,	etc

Levels	of	Testing

Unit	Testing

Integration	Testing

System	Testing

Acceptance	Testing

Any	module,	program,	object	separately	
testable	

Interface	between	components;	interactions	
with	other	systems	(OS,	HW,	etc)	

The	behavior	of	the	whole	product(system)	as	
defined	by	the	scope	of	the	project	

Is	the	responsibility	of	the	customer	– in	general.	The	goal	
is	to	gain	confidence	in	the	system;	especially	in	its	non-
functional	characteristics	

Levels	of	Testing
Unit	Testing:	Test	each	parts	
independently	and	isolated

Integration	Testing:	Make	sure	
that	different	pieces	work	
together.	Test	the	Interfaces	
between	the	different	pieces.
Interaction	with	other	systems	
(Hardware,	OS,	etc.)

System	Testing:	Test	the	whole	system

Regression	Testing:	Test	
that	it	still	works	after	a	
change	in	the	code

Levels	of	Testing

Unit	Testing

Regression	Testing

Integration	Testing

System/Validation	
Testing

Acceptance	Testing

Start

Finish

Requirements	&	Design
Start	Development

Unit	Tests	are	written	by	the	Developers	as	part	of	the	
Programming.	Each	part	is	developed	and	Unit	tested	
separately	(Every	Class	and	Method	in	the	code)

The	Customer	needs	to	test	and	approve	the	software	
before	he	can	take	it	into	use.	FAT/SAT.

System	testing	is	typically	Black-box	Tests	that	validate	
the	entire	system	against	its	requirements,	i.e	Checking	
that	a	software	system	meets	the	specifications	

Integration	testing	means	the	system	is	put	together	
and	tested	to	make	sure	everything	works	together.

Regression	testing	is	testing	the	system	to	check	that	
changes	have	not	“broken”	previously	working	code.	
Both	Manually	&	Automatically	(Re-run	Unit	Tests)

Testing	Overview
Test	Categories: Test	Levels: Test	Methods:

Unit	Testing

Regression	Testing

Integration	Testing

System	Testing

Acceptance	Testing

Black-box	Testing

White-box	Testing

Stress	Testing

Performance	
Testing

GUI	Testing

Functional
Testing

Non	Functional
Testing

Load	Testing

Usability	
Testing

Security	Testing

etc.

Software	Test	Plan	
(STP)

Hans-Petter	Halvorsen,	M.Sc.

Test	Planning
• To	maximize	the	effectiveness	of	resources	
spent	on	testing,	a	systematic	approach	is	
required

• A	Software	Test	Plan	(STP)	should	be	created

Test	Documentation

21

Planning	Tests Perform	Tests Document	
Test	Results

Software	Test	Plan	(STP)

Software	Requirements	Specifications	(SRS)
Software	Design	Document	(SDD)

Software	Test	
Documentation

(STD)

Test	Logs

These	documents	will	be	the	foundation	for	all	Testing

- Functional	&	Non-Functional	Requirements
- User	&	System	Requirements

Typical	Software	Documentation

High-Level	
Requirements	and	
Design	Documents

User	Manuals

System	
Documentation

Installation	Guides

Test	Plans

Test	Documentation

Detailed	
Requirements	and	
Design	Documents

ER	Diagram	(Database)
UML	Diagrams	(Code)

Ti
m
e

Start

Finish

How	to	Test/
What	to	Test

CAD	Drawings,	etc.

1.	Planning

2.	Testing

3.	End-user	
Documentation
(The	people	that	
shall	actually	use	
the	software)

Technical	Stuff

How	to	use	it

How	to	install	it

Proof	that	you	have	tested	and	that	the	
software	works	as	expected

(The	stakeholders,	the	
software	team;	architects,	
UX	designers,	developers)

(QA	people)

(Super	User/	IT	dep.)

WHAT
HOW

(End	User)Pr
oj
ec
t	M

an
ag
em

en
t	(
Ga

nt
t	C

ha
rt
,	e
tc
.)

(SRS)
(SDD)

(STP)
(STD)

Software	
Development	Plan (SDP)

2.Requierements
/Design

What	is	a	Software	Test	Plan	(STP)?
A	Document	that	answers	the	following:
• Testing	should	be	based	on	Requirements	&	Design	Documents
• What	shall	we	test?
• How	shall	we	test?
• Hardware/Software	Requirements
• Where	shall	we	test?
• Who	shall	test?
• How	often	shall	we	test	(Test	Schedule)?
• How	shall	tests	be	documented?

§ It	is	not	enough	simply	to	run	tests;	the	results	of	the	tests	must	be	systematically	recorded.	It	must	be	
possible	to	audit	the	testing	process	to	check	that	it	has	been	carried	out	correctly

§ System	tests:	This	section,	which	may	be	completely	separate	from	the	test	plan,	defines	
the	test	cases	that	should	be	applied	to	the	system.	These	tests	are	derived	from	the	
system	requirements	specification. http://www.softwareengineering-9.com/Web/Testing/Planning.html

These	things	need	to	be	specified	in	the	STP

Test	Plan	Example
A. Goals	and	Exit	Criteria	(Quality,	Robustness,	Schedule,	Performance	Goals	

of	the	Product,	...)
B. Items	to	be	Tested/Inspected	(Executables	such	as	modules	and	

components,	Nonexecutables	such	as	Requirments	and	Design	
specifications,	...)

C. Test	Process/Methodologies	(Unit,	Functional,		Acceptance,	Regression	
Tests,	Black-box,	White-box,	Test	metrics,	Bug	report	process,	...)

D. Resources	(People,	Tools,	Test	Environment,	...)
E. Schedule	(Test-case	development,	Test	execution,	Problem	reporting	and	

fixing,	...)
F. Risks	(...)
G. Major	Test	Scenarios	and	Test	Cases	(...)

Essentials	of	Software	Engineering,	Frank	Tsui;	Orlando	Karam;	Barbara	Bernal,	3	ed.,	Jones	&	Bartlett	Learning

Appendix	D	in	Essentials	of	Software	Engineering

How	to	make	a	Test	Plan

http://www.guru99.com/what-everybody-ought-to-know-about-test-planing.html

Test	Cases	List	Example
Tester:	_______________________	,	Date:	________

Test	Case OK Failed Description

The	Login	Procedure	works

User	Data	Saved	in	the	Database

etc

The	Testers	fill	in	these	Lists	electronically.	Should	be	included	in	Software	Test	Documentation

If	Test	Cases	Fails,	report	Bugs	in	VSO

Test	Planning	Summary
• Test	planning	involves	scheduling	and	estimating	the	system	testing	process,	

establishing	process	standards	and	describing	the	tests	that	should	be	carried	out.
• As	well	as	helping	managers	allocate	resources	and	estimate	testing	schedules,	test	

plans	are	intended	for	software	engineers	involved	in	designing	and	carrying	out	system	
tests.	

• They	help	technical	staff	get	an	overall	picture	of	the	system	tests	and	place	their	own	
work	in	this	context.	

• As	well	as	setting	out	the	testing	schedule	and	procedures,	the	test	plan	defines	the	
hardware	and	software	resources	that	are	required.

• Test	plans	are	not	a	static	documents	but	evolve	during	the	development	process.	Test	
plans	change	because	of	delays	at	other	stages	in	the	development	process.

• Test	planning	is	particularly	important	in	large	software	system	development.
• For	small	and	medium-sized	systems,	a	less	formal	test	plan	may	be	used,	but	there	is	

still	a	need	for	a	formal	document	to	support	the	planning	of	the	testing	process.
http://www.softwareengineering-9.com/Web/Testing/Planning.html

Test	Environment

Hans-Petter	Halvorsen,	M.Sc.

Why	Do	We	Need	a	Test	
Environment?

Why	cant	we	just	use	our	own	PC?

Why	Test	Environment?
• “It	works	on	my	PC”	says	the	Developer
• Clean	Environment
• On	the	Developers	PCs	we	have	all	kind	of	Software	installed	that	

the	Customer	dont	have,	e.g.	Development	Tools	like	Visual	
Studio,	etc.

• We	need	to	test	on	different	Platforms	and	Operating	Systems
• Customers	may	use	different	Web	Browsers
• Deployment:	Test	of	Installation	packages
• Make	the	software	available	for	Testers
• etc.

“It	works	on	my	Computer”
Make	sure	to	test	your	software	on	other	Computers	and	
Environments	than	your	Development	Computer!
• Everything	works	on	the	Developer	Computer
• The	Customers	Database	is	not	the	same	as	yours
• The	Customer	may	not	use	the	same	OS
• The	Customer	may	not	use	the	same	Web	Browser
• The	Customer	do	not	have	Visual	Studio,	SQL	Server,	etc.	on	their	
Personal	Computer

• Etc.
=>	Test	Environment	is	needed!

Development Testing Production

Development	
Environment Test	Environment

Production	
Environment

Typically	the	Developers	Personal	
Computer	with	Database,	Web	
Server	and	Programming	Software

A	Clean	PC/Server	(or	a	network	
with	PCs	and	Servers)	where	you	
install	and	test	your	Software.
Today	we	typically	set-up	a	Virtual
Test	Environment

The	Customers	environment	
where	you	unstall	the	final	
software	(Servers	and	
Clients)

Programming	environments	such	as	Visual	
Studio,	etc.	should	not	be	installed	in	this	
environment.	You	need	to	create	.exe	files	
etc.	in	order	to	make	your	software	run.

Developers Developers	&	Testers Customers
until	finished

Virtualization

Operation	System

Virtualization	
Software

Hypervisor

VM VM VM

Hardware	
(Computer)

VM VM VM

Guests

Host

VM	=	Virtual	Machines

A	Hypervisor	can	
run	directly	on	the	
computer	without	
a	Host	OS

Windows,	Linux,	...

Windows,	Linux,	...

Virtualization	Software
A	lot	of	Virtualization	Software	exists.	Here	are	some	examples:
• VMware	Workstation
• VMware	Workstation	Player (Free	of	charge	and	simple	to	

use)
• VMware	vSphere	and	vSphere	Hypervisor
• VMware	Fusion	(Mac)
• Parallels	Desktop	(Mac)
• Microsoft	Hyper-V
• VirtualBox
• etc.

VMware	Workstation	Player
VMware	Workstation	Player	is	for	personal	use	on	your	
own	PC.	VMware	Player	is	free	of	charge	for	personal	
non	commercial	use.

36

VMware	is	a	company	that	has	
been	specializing	within	
virtualization	software.
http://www.vmware.com

When	are	you	
finished	Testing?

Hans-Petter	Halvorsen,	M.Sc.

Software	Testing

“50%	of	the	software	development	is	
about	testing	your	software”

When	are	we	finished	with	Testing?

St
ar
t

Finished

Requirements	
&	Design

Development	&	Coding

Continuous	Testing	in	the	whole	SDLC!

Al
ph

a

RCBe
ta

RT
M

Final	
Delivery

Testing

Testing Testing Testing Testing

Increased
Focus

Increased
Focus

Increased
Focus

Increased
Focus

Agile/Scrum:	Periodically	Iterations/Sprint	every	14-30	days

...... ...

Code	
Freeze

Software	without	
Critical Bugs

Requirements	&	
Functionality

FunctionalityRequirements

You	can	never	find	all	Bugs!
Released	Software	do have	Bugs!

When	to	Stop	Testing?

• A	simple	answer	is	to	stop	testing	when	all	the	
planned	test	cases	are	executed	and	all	the	
problems	found	are	fixed.	

• In	reality,	it	may	not	be	that	simple.	We		are	
often	pressured	by	schedule	to	release	
software	product.

Software	Finished

Time

When	to	Stop	Development?

“90%”
“100%”

Details,	small	adjustments,	etc.
The	last	10%	takes	a	lot	of	time!!!

Sooner	or	later	you	have	to	say	enough	is	
enough	and	release	version	1.0.

One	must	define	within	the	development	
company,	development	team	or	in	dialogue	
with	the	customer	what	is	defined	as	"good	
enough".	Software	will	never	be	100%	complete	
or	error-free!

Time

When	to	Stop	Testing?

Critical	Point

In	the	beginning	it	it	easy	to	
find	bugs	with	few	resources

When	should	you	stop	Testing?
(depends	on	Time,	Budget,	etc.)

When	to	Stop	Testing?
• When	the	tester	has	not	been	able		to	find	another	
defect		in	5	(10?	30?	100?)	minutes	of	testing

• All	code	reviews	and	walkthroughs	have	certified	the	
code	as	ok

• When	a	given	checklist	of	test	types	has	been	
completed

• The	code	has	passed	all	unit	tests
• When	testing	runs	out	of	its	scheduled	time
• ...

E.	J.	Braude	and	M.	E.Bernstein,	Software	Engineering:	Modern	Approaches,	2	ed.:	Wiley,	2011.	+++			

Bug	Tracking		Systems

Hans-Petter	Halvorsen,	M.Sc.

Bug	Tracking	Systems
• A	“bug	tracking	system”	or	“defect	tracking	system”	
is	a	software	application	that	keeps	track	of	
reported	software	bugs	in	software	development	
projects.	

• It	may	be	regarded	as	a	type	of	“issue	tracking	
system”.

• Typically	bug	tracking	systems	are	integrated	with	
other	software	“project	management	applications”	
– e.g.,	Visual	studio	Team	Services,	Jira,	etc.

https://en.wikipedia.org/wiki/Bug_tracking_system

Bug	Tracking	Software
• Team	Foundation	Server/Visual	Studio	Team	
Services

• Jira
• Bugzilla
• Clearquest
• …	(hundreds)

Bug	Reporting	and	Tracking

Bug	
Tracking	
System

Developer

Tester

Report	
Bugs

Fix	
Bugs

Check	if	Bugs	
are	Fixed

Check	if	Bug	Fixes	
are	Approved

Test	Manager,	
Project	Manager,	QA	Department

Assign	
Responsible	

Person

Go	through	Lists	of	
Not	Fixed	Bugs,	
Fixed	Bugs,	etc.

Visual	Studio	Team	Services

Hans-Petter	Halvorsen,	M.Sc.

Work	Items	Example

You	can	create	
Queries	(both	
Personal	and	Team	
Queries)

List	of	Work	Items

Work	Item	Details

Work	Items	– New	Bug

Queries
• Used	to	find	existing	Work	Items
• You	may	create	different	Queries	to	make	it	easy	to	find	
the	Work	Items	you	need

• Queries	may	be	personal	or	visible	for	everybody	in	the	
project	(Team	Queries)

51

Creating	a	Query	- Example	

Code	Review	
&	Refactoring

Hans-Petter	Halvorsen,	M.Sc.

What	is	Refactoring?
• Even	when	using	best	practices	and	making	a	
conscious	effort	to	produce	high-quality	software,	
it	is	highly	unlikely	that	you	will	consistently	
produce	programs	that	cannot	be	improved.	

• Refactoring	is		
– the	activity	of	improving	your	code	style	without	altering	its	
behavior

– a	change	made	to	the	internal	structure	of	software	to	make	it	
easier	to	understand	and	cheaper	to	modify	without	changing	
its	observable	behavior

Refactoring	- Symptoms
• Coding	Style	and	Name	Conventions	not	followed
• Proper	Commenting	not	followed
• Duplicated	code	(clearly	a	waste).
• Long	method	(excessively	large	or	long	methods	perhaps	should	be	subdivided	

into	more	cohesive	ones).
• Large	class	(same	problem	as	long	method).
• Switch	statements	(in	object-oriented	code,	switch	statements	can	in	most	

cases	be	replaced	with	polymorphism,	making	the	code	clearer).
• Feature	envy,	in	which	a	method	tends	to	use	more	of	an	object	from	a	class	

different	to	the	one	it	belongs.
• Inappropriate	intimacy,	in	which	a	class	refers	too	much	to	private	parts	of	

other	classes.
=> Any	of	these	symptoms	(and	more)	will	indicate	that	your	code	can	be	
improved.	You	can	use	refactoring	to	help	you	deal	with	these	problems.

Hans-Petter	Halvorsen,	M.Sc.

University	College	of	Southeast	Norway
www.usn.no

E-mail:	hans.p.halvorsen@hit.no
Blog:	http://home.hit.no/~hansha/

